Spark中的combineByKey

在数据分析中,处理Key,Value的Pair数据是极为常见的场景,例如我们可以针对这样的数据进行分组、聚合或者将两个包含Pair数据的RDD根据key进行join。从函数的抽象层面看,这些操作具有共同的特征,都是将类型为RDD[(K,V)]的数据处理为RDD[(K,C)]。这里的V和C可以是相同类型,也可以是不同类型。这种数据处理操作并非单纯的对Pair的value进行map,而是针对不同的key值对原有的value进行联合(Combine)。因而,不仅类型可能不同,元素个数也可能不同。

Spark为此提供了一个高度抽象的操作combineByKey。该方法的定义如下所示:

  def combineByKey[C](createCombiner: V => C,
      mergeValue: (C, V) => C,
      mergeCombiners: (C, C) => C,
      partitioner: Partitioner,
      mapSideCombine: Boolean = true,
      serializer: Serializer = null): RDD[(K, C)] = {
    //实现略
  }

函数式风格与命令式风格不同之处在于它说明了代码做了什么(what to do),而不是怎么做(how to do)。combineByKey函数主要接受了三个函数作为参数,分别为createCombiner、mergeValue、mergeCombiners。这三个函数足以说明它究竟做了什么。理解了这三个函数,就可以很好地理解combineByKey。

combineByKey是将RDD[(K,V)]combine为RDD[(K,C)],因此,首先需要提供一个函数,能够完成从V到C的combine,称之为combiner。如果V和C类型一致,则函数为V => V。倘若C是一个集合,例如Iterable[V],则createCombiner为V => Iterable[V]。

mergeValue则是将原RDD中Pair的Value合并为操作后的C类型数据。合并操作的实现决定了结果的运算方式。所以,mergeValue更像是声明了一种合并方式,它是由整个combine运算的结果来导向的。函数的输入为原RDD中Pair的V,输出为结果RDD中Pair的C。

最后的mergeCombiners则会根据每个Key所对应的多个C,进行归并。

让我们将combineByKey想象成是一个超级酷的果汁机。它能同时接受各种各样的水果,然后聪明地按照水果的种类分别榨出不同的果汁。苹果归苹果汁,橙子归橙汁,西瓜归西瓜汁。我们为水果定义类型为Fruit,果汁定义为Juice,那么combineByKey就是将RDD[(String, Fruit)]combine为RDD[(String, Juice)]。

注意,在榨果汁前,水果可能有很多,即使是相同类型的水果,也会作为不同的RDD元素:

("apple", apple1), ("orange", orange1), ("apple", apple2)

combine的结果是每种水果只有一杯果汁(只是容量不同罢了):

("apple", appleJuice), ("orange", orangeJuice)

这个果汁机由什么元件构成呢?首先,它需要一个元件提供将各种水果榨为各种果汁的功能;其次,它需要提供将果汁进行混合的功能;最后,为了避免混合错误,还得提供能够根据水果类型进行混合的功能。注意第二个函数和第三个函数的区别,前者只提供混合功能,即能够将不同容器的果汁装到一个容器中,而后者的输入已有一个前提,那就是已经按照水果类型放到不同的区域,果汁机在混合果汁时,并不会混淆不同区域的果汁。

果汁机的功能类似于groupByKey+foldByKey操作。它可以调用combineByKey函数:

case class Fruit(kind: String, weight: Int) {
    def makeJuice:Juice = Juice(weight * 100)
}
case class Juice(volumn: Int) {
    def add(j: Juice):Juice = Juice(volumn + j.volumn)
}
val apple1 = Fruit("apple", 5)
val apple2 = Fruit("apple", 8)
val orange1 = Fruit("orange", 10)

val fruit = sc.parallelize(List(("apple", apple1) , ("orange", orange1) , ("apple", apple2))) 
val juice = fruit.combineByKey(
    f => f.makeJuice,
    (j:Juice,f) => j.add(f.makeJuice),
    (j1:Juice,j2:Juice) => j1.add(j2) 
)

执行juice.collect,结果为:

Array[(String, Juice)] = Array((orange,Juice(1000)), (apple,Juice(1300)))

RDD中有许多针对Pair RDD的操作在内部实现都调用了combineByKey函数。例如groupByKey:

class PairRDDFunctions[K, V](self: RDD[(K, V)])
    (implicit kt: ClassTag[K], vt: ClassTag[V], ord: Ordering[K] = null)
  extends Logging
  with SparkHadoopMapReduceUtil
  with Serializable {
    def groupByKey(partitioner: Partitioner): RDD[(K, Iterable[V])] = {
        val createCombiner = (v: V) => CompactBuffer(v)
        val mergeValue = (buf: CompactBuffer[V], v: V) => buf += v
        val mergeCombiners = (c1: CompactBuffer[V], c2: CompactBuffer[V]) => c1 ++= c2
        val bufs = combineByKey[CompactBuffer[V]](
          createCombiner, mergeValue, mergeCombiners, partitioner, mapSideCombine=false)
        bufs.asInstanceOf[RDD[(K, Iterable[V])]]
      }
}

groupByKey函数针对PairRddFunctions的RDD[(K, V)]按照key对value进行分组。它在内部调用了combineByKey函数,传入的三个函数分别承担了如下职责:

  • createCombiner是将原RDD中的K类型转换为Iterable[V]类型,实现为CompactBuffer。
  • mergeValue实则就是将原RDD的元素追加到CompactBuffer中,即将追加操作(+=)视为合并操作。
  • mergeCombiners则负责针对每个key值所对应的Iterable[V],提供合并功能。

再例如,我们要针对科目对成绩求平均值:

val scores = sc.parallelize(List(("chinese", 88.0) , ("chinese", 90.5) , ("math", 60.0), ("math", 87.0)))

平均值并不能一次获得,而是需要求得各个科目的总分以及科目的数量。因此,我们需要针对scores进行combine,从(String, Float)combine为(String, (Float, Int))。调用combineByKey函数后,我们可以再通过map来获得平均值。代码如下:

val avg = scores.combineByKey(
    (v) => (v, 1),
    (acc: (Float, Int), v) => (acc._1 + v, acc._2 + 1),
    (acc1:(Float, Int), acc2:(Float, Int)) => (acc1._1 + acc2._1, acc1._2 + acc2._2)
).map{ case (key, value) => (key, value._1 / value._2.toFloat) }

除了可以进行group、average之外,根据传入的函数实现不同,我们还可以利用combineByKey完成诸如aggregate、fold等操作。这是一个高度的抽象,但从声明的角度来看,却又不需要了解过多的实现细节。这正是函数式编程的魅力。

2015-01-23 21:3547SparkScala